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27. PASSAGE OF PARTICLES THROUGH MATTER

Revised April 2002 by H. Bichsel (University of Washington), D.E. Groom (LBNL), and
S.R. Klein (LBNL).

27.1. Notation

Table 27.1: Summary of variables used in this section. The kinematic variables (3
and v have their usual meanings.

Symbol Definition Units or Value
a  Fine structure constant 1/137.035999 11(46)
(e? /4meghc)
M Incident particle mass MeV/c?
E  Incident particle energy yMc¢?> MeV
T  Kinetic energy MeV
mec®  Electron mass x ¢2 0.510998 918(44) MeV
re  Classical electron radius 2.817940 325(28) fm
e? /4megmec?
N4 Avogadro’s number 6.0221415(10) x 1023 mol~!

ze  Charge of incident particle
Z  Atomic number of absorber

A Atomic mass of absorber g mol ™!
K/A AnNgrimec? /A 0.307075 MeV g~! cm?
for A =1 g mol™!
I Mean excitation energy eV (Nota bene!)
) Density effect correction to ionization energy loss
hw,  Plasma energy 28.816+/p(Z/A) eV(@)
(\/ATNer3 mec? /o)
N. Electron density (units of r¢) ™3

w;  Weight fraction of the jth element in a compound or mixture

n;  oc number of jth kind of atoms in a compound or mixture

—  dar?Ny/A (716.408 g cm~2)~! for A =1 g mol~!
Xo Radiation length g cm ™2

E. Critical energy for electrons MeV

E,. Critical energy for muons GeV

Es  Scale energy /47 /a mec? 21.2052 MeV

Rjpr Moliere radius g cm ™2

(@) For pin g cm™3.

CITATION: S. Eidelman et al., Physics Letters B592, 1 (2004)
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2 27. Passage of particles through matter

27.2. Electronic energy loss by heavy particles [1-5]

Moderately relativistic charged particles other than electrons lose energy in matter
primarily by ionization and atomic excitation. The mean rate of energy loss (or stopping
power) is given by the Bethe-Bloch equation,

dE o Z 1 [1. 2mec®B?4?Tmax o 0
—— =Kz—— |=1In —-06°—-= .
dx Ap2 |2 12 2
Here Tiax is the maximum kinetic energy which can be imparted to a free electron in a
single collision, and the other variables are defined in Table 27.1. With K as defined in

Table 27.1 and A in g mol™!, the units are MeV g~ lem?.

In this form, the Bethe-Bloch equation describes the energy loss of pions in a material
such as copper to about 1% accuracy for energies between about 6 MeV and 6 GeV
(momenta between about 40 MeV/c and 6 GeV/c). At lower energies various corrections
discussed in Sec. 27.2.1 must be made. At higher energies, radiative effects begin to be
important. These limits of validity depend on both the effective atomic number of the
absorber and the mass of the slowing particle.

(27.1)
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Fig. 27.1: Stopping power (= (—dFE/dz)) for positive muons in copper
as a function of vy = p/Mc over nine orders of magnitude in momentum
(12 orders of magnitude in kinetic energy). Solid curves indicate the

total stopping power. Data below the break at 8y ~ 0.1 are taken from
ICRU 49 [2], and data at higher energies are from Ref. 1. Vertical bands
indicate boundaries between different approximations discussed in the text.
The short dotted lines labeled “u™ 7 illustrate the “Barkas effect,” the

dependence of stopping power on projectile charge at very low energies [6].
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27. Passage of particles through matter 3

The function as computed for muons on copper is shown by the solid curve in Fig. 27.1,
and for pions on other materials in Fig. 27.3. A minor dependence on M at the highest
energies is introduced through Ty, ax, but for all practical purposes in high-energy physics
dE/dx in a given material is a function only of §. Except in hydrogen, particles of
the same velocity have similar rates of energy loss in different materials; there is a
slow decrease in the rate of energy loss with increasing Z. The qualitative difference in
stopping power behavior at high energies between a gas (He) and the other materials
shown in Fig. 27.3 is due to the density-effect correction, ¢, discussed below. The stopping
power functions are characterized by broad minima whose position drops from (v = 3.5
to 3.0 as Z goes from 7 to 100. The values of minimum ionization as a function of atomic
number are shown in Fig. 27.2.

In practical cases, most relativistic particles (e.g., cosmic-ray muons) have mean energy
loss rates close to the minimum, and are said to be minimum ionizing particles, or mip’s.

As discussed below, the most probable energy loss in a detector is considerably below
the mean given by the Bethe-Bloch equation.
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Figure 27.2: Stopping power at minimum ionization for the chemical elements.
The straight line is fitted for Z > 6. A simple functional dependence on Z is not to
be expected, since (—dF /dz) also depends on other variables.

Eq. (27.1) may be integrated to find the total (or partial) “continuous slowing-down
approximation” (CSDA) range R for a particle which loses energy only through ionization
and atomic excitation. Since dF/dx depends only on (3, R/M is a function of E/M or
pc/M. In practice, range is a useful concept only for low-energy hadrons (R < A7, where
A7 is the nuclear interaction length), and for muons below a few hundred GeV (above
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4 27. Passage of particles through matter
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Figure 27.3: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous
helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for

muons and pions, are not included. These become significant for muons in iron for
B~y 2 1000, and at lower momenta for muons in higher-Z absorbers. See Fig. 27.20.

which radiative effects dominate). R/M as a function of By = p/Mc is shown for a
variety of materials in Fig. 27.4.

The mass scaling of dE'/dx and range is valid for the electronic losses described by the
Bethe-Bloch equation, but not for radiative losses, relevant only for muons and pions.

For a particle with mass M and momentum M Bvyc¢, Tyax is given by

2mec2 B272

T = . 27.2
" T Dme /M + (e BT )

In older references [3,4] the “low-energy” approximation
Tmax = 2mec? 242, valid for 2yme /M < 1, is often implicit. For a pion in copper, the
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Figure 27.4: Range of heavy charged particles in liquid (bubble chamber)
hydrogen, helium gas, carbon, iron, and lead. For example: For a KT whose
momentum is 700 MeV /e, By = 1.42. For lead we read R/M =~ 396, and so the

range is 195 g cm™“.

2

error thus introduced into dE/dz is greater than 6% at 100 GeV. The correct expression

should be used.

At energies of order 100 GeV, the maximum 4-momentum transfer to the electron can
exceed 1 GeV /e, where hadronic structure effects significantly modify the cross sections.
This problem has been investigated by J.D. Jackson [7], who concluded that for hadrons
(but not for large nuclei) corrections to dF/dx are negligible below energies where
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6 27. Passage of particles through matter

radiative effects dominate. While the cross section for rare hard collisions is modified, the
average stopping power, dominated by many softer collisions, is almost unchanged.

“The determination of the mean excitation energy is the principal non-trivial task in
the evaluation of the Bethe stopping-power formula” [8]. Recommended values have varied
substantially with time. Estimates based on experimental stopping-power measurements
for protons, deuterons, and alpha particles and on oscillator-strength distributions and
dielectric-response functions were given in ICRU 37 [9]. These values, shown in Fig. 27.5,
have since been widely used. Machine-readable versions can also be found [10]. These
values are widely used.
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Figure 27.5: Mean excitation energies (divided by Z) as adopted by the ICRU [9].
Those based on experimental measurements are shown by symbols with error flags;
the interpolated values are simply joined. The grey point is for liquid Ho; the black
point at 19.2 eV is for Ho gas. The open circles show more recent determinations by
Bichsel [11]. The dotted curve is from the approximate formula of Barkas [12] used
in early editions of this Review.

27.2.1. Energy loss at low energies: Shell corrections C'/Z must be included in the
square brackets of of Eq. (27.1) [2,9,11,12] to correct for atomic binding having been
neglected in calculating some of the contributions to Eq. (27.1). The Barkas form [12]
was used in generating Fig. 27.1. For copper it contributes about 1% at 8~y = 0.3 (kinetic
energy 6 MeV for a pion), and the correction decreases very rapidly with energy.

Eq. (27.1) is based on a first-order Born approximation. Higher-order corrections,
again important only at lower energy, are normally included by adding a term z2 Lo (6)
inside the square brackets.
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27. Passage of particles through matter 7

An additional “Barkas correction” zL1(f) makes the stopping power for a negative
particle somewhat larger than for a positive particle with the same mass and velocity. In
a 1956 paper, Barkas et al. noted that negative pions had a longer range than positive
pions [6]. The effect has been measured for a number of negative/positive particle pairs,
most recently for antiprotons at the CERN LEAR facility [13].

A detailed discussion of low-energy corrections to the Bethe formula is given in
ICRU Report 49 [2]. When the corrections are properly included, the accuracy of the
Bethe-Bloch treatment is accurate to about 1% down to 8 =~ 0.05, or about 1 MeV for
protons.

For 0.01 < g < 0.05, there is no satisfactory theory. For protons, one usually relies
on the phenomenological fitting formulae developed by Andersen and Ziegler [2,14]. For
particles moving more slowly than ~ 0.01c¢ (more or less the velocity of the outer atomic
electrons), Lindhard has been quite successful in describing electronic stopping power,
which is proportional to  [15,16]. Finally, we note that at low energies, e.g., for protons
of less than several hundred eV, non-ionizing nuclear recoil energy loss dominates the
total energy loss [2,16,17].

As shown in ICRU49 [2] (using data taken from Ref. 14), the nuclear plus electronic
proton stopping power in copper is 113 MeV cm? g~1 at T'= 10 keV, rises to a maximum
of 210 MeV cm? g1 at 100-150 keV, then falls to 120 MeV cm?g~! at 1 MeV. Above
0.5-1.0 MeV the corrected Bethe-Bloch theory is adequate.

27.2.2. Density effect: As the particle energy increases, its electric field flattens
and extends, so that the distant-collision contribution to Eq. (27.1) increases as In (3.
However, real media become polarized, limiting the field extension and effectively
truncating this part of the logarithmic rise [3-4,18-21]. At very high energies,

0/2 = In(hwp/I)+Infy —1/2, (27.3)

where ¢/2 is the density effect correction introduced in Eq. (27.1) and hw), is the plasma
energy defined in Table 27.1. A comparison with Eq. (27.1) shows that |dE/dz| then

grows as In B rather than In 52~2, and that the mean excitation energy I is replaced by
the plasma energy fiwp. The ionization stopping power as calculated with and without

the density effect correction is shown in Fig. 27.1. Since the plasma frequency scales as
the square root of the electron density, the correction is much larger for a liquid or solid
than for a gas, as is illustrated by the examples in Fig. 27.3.

The density effect correction is usually computed using Sternheimer’s parameteriza-
tion [18]:

2(In10)x — C it x> xq;

5 2(In10)z — C + a(xy — 2)F if 29 <z < 21; (27.4)
0 if © < xg (nonconductors); '
80102(z—z0) if < xg (conductors)

Here = = logygn = log1g(p/Mc). C (the negative of the C' used in Ref. 18) is obtained
by equating the high-energy case of Eq. (27.4) with the limit given in Eq. (27.3). The
other parameters are adjusted to give a best fit to the results of detailed calculations
for momenta below Mcexp(z1). Parameters for elements and nearly 200 compounds and
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8 27. Passage of particles through matter

mixtures of interest are published in a variety of places, notably in Ref. 21. A recipe for
finding the coefficients for nontabulated materials is given by Sternheimer and Peierls [19],
and is summarized in Ref. 1.

The remaining relativistic rise comes from the 5242 growth of Timax, which in turn is
due to (rare) large energy transfers to a few electrons. When these events are excluded,
the energy deposit in an absorbing layer approaches a constant value, the Fermi plateau
(see Sec. 27.2.4 below). At extreme energies (e.g., > 332 GeV for muons in iron, and at
a considerably higher energy for protons in iron), radiative effects are more important
than ionization losses. These are especially relevant for high-energy muons, as discussed
in Sec. 27.6.

27.2.3. Energetic knock-on electrons (6 rays): The distribution of secondary
electrons with kinetic energies 7' > I is given by [3]
2

d“N _ lezgi F(T)

dl'dx 2 Ap2 T2
for I < T < Tmax, where Thax is given by Eq. (27.2). Here 3 is the velocity of the
primary particle. The factor F' is spin-dependent, but is about unity for 7" < Tiax. For
spin-0 particles F(T) = (1 — 32T /Tmax); forms for spins 1/2 and 1 are also given by
Rossi [3]. For incident electrons, the indistinguishability of projectile and target means
that the range of T extends only to half the kinetic energy of the incident particle.
Additional formulae are given in Ref. 22. Equation (27.5) is inaccurate for T  close to
I: for 21 $ T < 101, the 1/T? dependence above becomes approximately 777, with
3< 0S5 (23]

0 rays of appreciable energy are rare. For example, for a 500 MeV pion incident on a
silicon detector with thickness z = 300 pum, one may integrate Eq. (27.5) from T¢yt to
Tmax to find that z(dN/dx) = 1, or an average of one § ray per particle crossing, for Teyt
equal to only 12 keV. For Teyt = 116 keV (the mean minimum energy loss in 300 pym of
silicon), (dN/dx) = 0.0475—]less than one particle in 20 produces a ¢ ray with kinetic
energy greater than Teyt.”

(27.5)

A ) ray with kinetic energy T, and corresponding momentum pe is produced at an
angle 6 given by
cost) = (Te/pe)(pmax/Tmax) ) (27-6)
where pmax is the momentum of an electron with the maximum possible energy transfer

Tmax .

* These calculations assume a spin-0 incident particle and the validity of the Rutherford
cross section used in Eq. (27.5).
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27. Passage of particles through matter 9

27.2.4. Restricted energy loss rates for relativistic ionizing particles: Further

insight can be obtained by examining the mean energy deposit by an ionizing particle

when energy transfers are restricted to T' < Teyt < Tmax- The restricted energy loss rate
is

dx T<Tput ApB?|2 L
ﬁz Tcut o
—— 1+ = —=. 27.7

This form approaches the normal Bethe-Bloch function (Eq. (27.1)) as Teut — Tmax-
It can be verified that the difference between Eq. (27.1) and Eq. (27.7) is equal to

ij;r;‘?X T(d?>N/dTdz)dT, where d’N/dTdz is given by Eq. (27.5).

Since Teyut replaces Tmax in the argument of the logarithmic term of Eq. (27.1), the
B~ term producing the relativistic rise in the close-collision part of dE/dz is replaced by
a constant, and |dE/dz|rT,,, approaches the constant “Fermi plateau.” (The density
effect correction 9 eliminates the explicit 3+ dependence produced by the distant-collision
contribution.)

27.2.5. Fluctuations in energy loss: The mean energy loss per unit absorber
thickness by charged particles in matter, as given by the Bethe-Bloch formula
(Eq. (27.1)), is essentially useless in describing the behavior of a single particle because
of the stochastic nature of the energy losses. Since the single-collision spectrum is highly
skewed, the probability distribution function (pdf) describing the “straggling” is also
highly skewed. The pdf f(A;Bv,x) describing the distribution of energy loss A in
absorber thickness x is usually called the “Landau distribution [24],” although a careful
reading of Rossi [3] shows that the matter is much more complicated. Examples of the
distribution based on recent calculations by Bichsel [25-27] are shown in Fig. 27.6.
The most probable loss A, increases in a first approximation as x (a + Inz), and the
ratio w/A, decreases with increasing « (where w is the full width at half maximum, as
indicated in the figure). For very thick absorbers, where the energy loss exceeds one half
of the original energy, f(A) begins to approximate a Gaussian.

The most probable loss per unit thickness, normalized to the mean loss rate by a
minimum ionizing particle, is shown in Fig. 27.7. These “Bichsel functions” rise by
perhaps 10% from their minimum values as the energy increases, but reach a Fermi
plateau for the same reasons that restricted energy loss does: The asymptotic In 3 rise
in the Bethe-Block formula comes from the hard-collision losses that create the tail.

The most probable loss is much more relevant to detector calibration than the mean
energy loss, since the tail is often lost in background and in any case is difficult to define
because of the weight of a few high-loss events. Note that the most probable loss is less
than 70% of the mean for a typical silicon strip detector.

The function f(A;3v,x) should be used in maximum likelihood fits to the signals
produced by a single particle, as in the case of a track in a TPC.
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10 27. Passage of particles through matter
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Figure 27.6: Straggling functions in silicon for 500 MeV pions, normalized to unity
at the most probable value Ap/x. The width w is the full width at half maximum.
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Figure 27.7: Most probable energy loss in silicon, scaled to the mean loss of a
minimum ionizing particle, 388 eV/um (1.66 MeV g~'cm?).
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27. Passage of particles through matter 11

27.2.6. Energy loss in mixtures and compounds: A mixture or compound can be
thought of as made up of thin layers of pure elements in the right proportion (Bragg

additivity). In this case,
dFE dFE
o T2

where dE/dz|; is the mean rate of energy loss (in MeV g cm™2) in the jth element.

Eq. (27.1) can be inserted into Eq. (27.8) to find expressions for (Z/A), (I), and (J); for
example, (Z/A) = Y w;jZ;j/A; = > n;jZ;/ > njA;. However, (I) as defined this way is
an underestimate, because in a compound electrons are more tightly bound than in the
free elements, and (J) as calculated this way has little relevance, because it is the electron
density which matters. If possible, one uses the tables given in Refs. 21 and 28, which in-
clude effective excitation energies and interpolation coefficients for calculating the density
effect correction for the chemical elements and nearly 200 mixtures and compounds. If a
compound or mixture is not found, then one uses the recipe for ¢ given in Ref. 19 (repeated
in Ref. 1), and calculates (I) according to the discussion in Ref. 8. (Note the “13%” rule!)

: (27.8)

J

27.2.7. Ionization yields: Physicists frequently relate total energy loss to the number
of ion pairs produced near the particle’s track. This relation becomes complicated for
relativistic particles due to the wandering of energetic knock-on electrons whose ranges
exceed the dimensions of the fiducial volume. For a qualitative appraisal of the nonlocality
of energy deposition in various media by such modestly energetic knock-on electrons,
see Ref. 29. The mean local energy dissipation per local ion pair produced, W, while
essentially constant for relativistic particles, increases at slow particle speeds [30]. For
gases, W can be surprisingly sensitive to trace amounts of various contaminants [30].
Furthermore, ionization yields in practical cases may be greatly influenced by such factors
as subsequent recombination [31].

27.3. Multiple scattering through small angles

A charged particle traversing a medium is deflected by many small-angle scatters.
Most of this deflection is due to Coulomb scattering from nuclei, and hence the effect
is called multiple Coulomb scattering. (However, for hadronic projectiles, the strong
interactions also contribute to multiple scattering.) The Coulomb scattering distribution
is well represented by the theory of Moliere [32]. It is roughly Gaussian for small
deflection angles, but at larger angles (greater than a few 6, defined below) it behaves
like Rutherford scattering, having larger tails than does a Gaussian distribution.

If we define ]
Oo =0 Jlane = 7 Ospace - (27.9)
then it is sufficient for many applications to use a Gaussian approximation for the central
98% of the projected angular distribution, with a width given by [33,34]

13.6 MeV
0y = Te 2 \/z/Xo [1 +0.0381In(z/Xo)]| - (27.10)
cp
Here p, Bc, and z are the momentum, velocity, and charge number of the incident particle,
and x /Xy is the thickness of the scattering medium in radiation lengths (defined below).
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12 27. Passage of particles through matter

This value of 6 is from a fit to Moliere distribution [32] for singly charged particles with
=1 for all Z, and is accurate to 11% or better for 1073 < z/Xg < 100.

Eq. (27.10) describes scattering from a single material, while the usual problem involves
the multiple scattering of a particle traversing many different layers and mixtures. Since it
is from a fit to a Moliere distribution, it is incorrect to add the individual 6y contributions
in quadrature; the result is systematically too small. It is much more accurate to apply
Eq. (27.10) once, after finding z and X for the combined scatterer.

Lynch and Dahl have extended this phenomenological approach, fitting Gaussian
distributions to a variable fraction of the Moliere distribution for arbitrary scatterers [34],
and achieve accuracies of 2% or better.

A
X
Y

-
——
-
-~ —
-
—~ —
—

gp\la\ne\\\\ ﬁplane\

$ ) eplane

A

Figure 27.8: Quantities used to describe multiple Coulomb scattering. The particle
is incident in the plane of the figure.

The nonprojected (space) and projected (plane) angular distributions are given
approximately by [32]

1 0

5 exp | ——= | dQ, (27.11)

27 05 205

2

1 gplane
exp | - b e 97.12
\/% % P [ 9 08 plane ( )
where 6 is the deflection angle. In this approximation, 982pace ~ (Gglane LT 93)1 ane y), where

the = and y axes are orthogonal to the direction of motion, and d€2 ~ dfpane o+ AFplane,y-
Deflections into 6pjane o and Opjane y are independent and identically distributed.
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27. Passage of particles through matter 13

Figure 27.8 shows these and other quantities sometimes used to describe multiple
Coulomb scattering. They are

1 1
plane = 7 0 blane = 7 (27.13)
1 1
yf)rlralxsne - NG x eglgsﬁe = ﬁ z 0o (27.14)

1

All the quantitative estimates in this section apply only in the limit of small Qgﬁ%e

and in the absence of large-angle scatters. The random variables s, i, y, and 6 in a

given plane are distributed in a correlated fashion (see Sec. 31.1 of this Review for the
definition of the correlation coefficient). Obviously, y ~ xv. In addition, y and 6 have

the correlation coefficient p, g9 = V/3/2 = 0.87. For Monte Carlo generation of a joint

(¥ plane; Oplane) distribution, or for other calculations, it may be most convenient to work
with independent Gaussian random variables (z1, z2) with mean zero and variance one,
and then set

Yplane =21 L o (1 — p§9)1/2/\/§ + 22 Pyo 90/\/§

=212 00/V12 + 20 x00/2 ; (27.16)
Oplane =22 0 - (27.17)

Note that the second term for y pjane equals z 0p1ane/2 and represents the displacement
that would have occurred had the deflection 0, all occurred at the single point /2.

For heavy ions the multiple Coulomb scattering has been measured and compared with
various theoretical distributions [35].

27.4. Photon and electron interactions in matter

27.4.1. Radiation length: High-energy electrons predominantly lose energy in matter
by bremsstrahlung, and high-energy photons by eTe™ pair production. The characteristic
amount of matter traversed for these related interactions is called the radiation length Xy,
usually measured in g ecm™2. It is both (a) the mean distance over which a high-energy
electron loses all but 1/e of its energy by bremsstrahlung, and (b) % of the mean free
path for pair production by a high-energy photon [36]. It is also the appropriate scale
length for describing high-energy electromagnetic cascades. X has been calculated and
tabulated by Y.S. Tsai [37]:

1 4047“2&{22 [Lead — F(2)] + ZL;ad} . (27.18)
For A =1 g mol™!, 4ar2N /A = (716.408 g cm~2)~!. L..q and L’ 4 are given in
Table 27.2. The function f(Z) is an infinite sum, but for elements up to uranium can be
represented to 4-place accuracy by

£(Z) = a?[(1+a?) "1 +0.20206
—0.0369 a® + 0.0083 a* — 0.0024°] , (27.19)
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14 27. Passage of particles through matter

where a = aZ [38].

Table 27.2: Tsai’s L,,q and L{rad’ for use in calculating the radiation length in an
element using Eq. (27.18).

Element A Lyaq L; ad

H 1 5.31 6.144

He 2 4.79 5.621

Li 3 4.74 5.805

Be 4 4.71 5.924
Others >4 In(184.15Z71/3) In(1194 Z~2/3)

Although it is easy to use Eq. (27.18) to calculate X, the functional dependence on Z
is somewhat hidden. Dahl provides a compact fit to the data [39]:

716.4 g cm™2 A
Z(Z +1)In(287//Z)
Results using this formula agree with Tsai’s values to better than 2.5% for all elements
except helium, where the result is about 5% low.

\/<§10 GeV
H S

0= (27.20)

Bremsstrahlung

=
N

§ 100 GeV s
2 |1 Tev |
8 | '
b 0 8 10TV T '/ .'F
g o)/ .
> 10TeV. ... s
g " ’/‘/, /I
Z o4f, ey ;
X R )
N ," /-/ - 1 P-ey4 B /
/'/ ST - 10 P?y
0 = S I - 5
0 0.25 o5 — 1
y = k/E

Figure 27.10: The normalized bremsstrahlung cross section kdoppps/dk in lead
versus the fractional photon energy y = k/FE. The vertical axis has units of photons
per radiation length.

The radiation length in a mixture or compound may be approximated by
1/Xo =) wj/X;,

where w; and X are the fraction by weight and the radiation length for the jth element.

(27.21)
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Figure 27.9: Fractional energy loss per radiation length in lead as a function of
electron or positron energy. Electron (positron) scattering is considered as ionization
when the energy loss per collision is below 0.255 MeV, and as Mgller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel and Crawford,
Electron-Photon Shower Distribution Function Tables for Lead, Copper, and Air
Absorbers, Pergamon Press, 1970. Messel and Crawford use Xo(Pb) = 5.82 g/cm?,
but we have modified the figures to reflect the value given in the Table of Atomic
and Nuclear Properties of Materials (Xo(Pb) = 6.37 g/cm?).

27.4.2. Energy loss by electrons: At low energies electrons and positrons primarily
lose energy by ionization, although other processes (Mgller scattering, Bhabha scattering,
e annihilation) contribute, as shown in Fig. 27.9. While ionization loss rates rise

logarithmically with energy, bremsstrahlung losses rise nearly linearly (fractional loss is
nearly independent of energy), and dominates above a few tens of MeV in most materials

Tonization loss by electrons and positrons differs from loss by heavy particles because
of the kinematics, spin, and the identity of the incident electron with the electrons which
it ionizes. Complete discussions and tables can be found in Refs. 8, 9, and 28.

At very high energies and except at the high-energy tip of the bremsstrahlung
spectrum, the cross section can be approximated in the “complete screening case” as [37]

do/dk = (1/k)4ar2{(§ — 4y + y*)[Z%(Laa — [(2)) + Z L. 4]
(27.22)
+5(1—y)(22+2)},

where y = k/FE is the fraction of the electron’s energy transfered to the radiated photon.
At small y (the “infrared limit”) the term on the second line can reach 2.5%. If it is
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Figure 27.11: Two definitions of the critical energy F.

ignored and the first line simplified with the definition of X given in Eq. (27.18), we have

do A 4 4 2
— = 3 — 3y + . 27.23

This cross section (times k) is shown by the top curve in Fig. 27.10.

This formula is accurate except in near y = 1, where screening may become incomplete,
and near y = 0, where the infrared divergence is removed by the interference of
bremsstrahlung amplitudes from nearby scattering centers (the LPM effect) [40,41]
and dielectric supression [42,43]. These and other supression effects in bulk media are
discussed in Sec. 27.4.5.

With decreasing energy (E < 10 GeV) the high-y cross section drops and the curves
become rounded as y — 1. Curves of this familar shape can be seen in Rossi [3]
(Figs. 2.11.2,3); see also the review by Koch & Motz [44].

Except at these extremes, and still in the complete-screening approximation, the the
number of photons with energies between ki, and kpax emitted by an electron travelling
a distance d < Xy is
i %ln Fmax _ 4(kmax - kmin) + (kmax - kmin)2
Xo |3 3E 2F?

N, = (27.24)

kmin
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Figure 27.12: Electron critical energy for the chemical elements, using Rossi’s
definition [3]. The fits shown are for solids and liquids (solid line) and gases (dashed
line). The rms deviation is 2.2% for the solids and 4.0% for the gases. (Computed
with code supplied by A. Fassoé.)

27.4.3. Critical energy: An electron loses energy by bremsstrahlung at a rate nearly
proportional to its energy, while the ionization loss rate varies only logarithmically with
the electron energy. The critical energy E. is sometimes defined as the energy at which
the two loss rates are equal [45]. Berger and Seltzer [45] also give the approximation
E. = (800 MeV)/(Z + 1.2). This formula has been widely quoted, and has been given in
older editions of this Review [46]. Among alternate definitions is that of Rossi [3], who
defines the critical energy as the energy at which the ionization loss per radiation length
is equal to the electron energy. Equivalently, it is the same as the first definition with the
approximation |dFE/dx|yrems &~ E/Xg. This form has been found to describe transverse
electromagnetic shower development more accurately (see below). These definitions are
illustrated in the case of copper in Fig. 27.11.

The accuracy of approximate forms for F. has been limited by the failure to distinguish
between gases and solid or liquids, where there is a substantial difference in ionization
at the relevant energy because of the density effect. We distinguish these two cases in
Fig. 27.12. Fits were also made with functions of the form a/(Z + b)%, but a was found
to be essentially unity. Since E. also depends on A, I, and other factors, such forms are
at best approximate.
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Figure 27.13: Photon total cross sections as a function of energy in carbon and
lead, showing the contributions of different processes:
Op.e. = Atomic photoelectric effect (electron ejection, photon absorption)
ORayleigh = Coherent scattering (Rayleigh scattering—atom neither ionized nor
excited)
OCompton = Incoherent scattering (Compton scattering off an electron)
Knue = Pair production, nuclear field
ke = Pair production, electron field
Data from Hubbell, Gimm, and @Qverbg, J. Phys. Chem. Ref. Data 9, 1023 (1980).
Curves for these and other elements, compounds, and mixtures may be obtained
from
http://physics.nist.gov/PhysR&EDHt200Tht$fhoton total cross section is

approximately flat for at least two decades beyond the energy range shown. Original
figures courtesy J.H. Hubbell (NIST).
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27.4.4. Energy loss by photons: Contributions to the photon cross section in a light
element (carbon) and a heavy element (lead) are shown in Fig. 27.13. At low energies it
is seen that the photoelectric effect dominates, although Compton scattering, Rayleigh
scattering, and photonuclear absorption also contribute. The photoelectric cross section
is characterized by discontinuities (absorption edges) as thresholds for photoionization of
various atomic levels are reached. Photon attenuation lengths for a variety of elements
are shown in Fig. 27.15, and data for 30 eV< k <100 GeV for all elements is available
from the web pages given in the caption. Here k is the photon energy.

1.00 . .
] Pair production
X
e
N 075
o = =
s )i T{oTev
3 10 TeVv
3 0.50 | L 41
| . L
Z< \ -... 100 Tev___. 1EeV
20.25
X TN g
N e 1PeV ______________________
v ~100PeV—._._ _ _ _ 10PeV. _ _._ _.—-—7
0 S e T Tt — s s — e = s o Ao T -
0 0.25 0.5 0.75 1
x = E/Zk

Figure 27.14: The normalized pair production cross section doppps/dy, versus
fractional electron energy x = E/k.

The increasing domination of pair production as the energy increases is shown in
Fig. 27.16. Using approximations similar to those used to obtain Eq. (27.23), Tsai’s
formula for the differential cross section [37] reduces to

A

5—2 = XN [1 - 32(1—2)] (27.25)
in the complete-screening limit valid at high energies. Here x = E/k is the fractional
energy transfer to the pair-produced electron (or positron), and k is the incident photon
energy. The cross section is very closely related to that for bremsstrahlung, since the
Feynman diagrams are variants of one another. The cross section is of necessity symmetric
between = and 1 — x, as can be seen by the solid curve in Fig. 27.14. See the review by
Motz, Olsen, & Koch for a more detailed treatment [47].

Eq. (27.25) may be integrated to find the high-energy limit for the total eTe™
pair-production cross section:

o= 5(A/XoNa) . (27.26)

Equation Eq. (27.26) is accurate to within a few percent down to energies as low as
1 GeV, particularly for high-Z materials.
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Figure 27.15: The photon mass attenuation length (or mean free path) A = 1/(u/p)
for various elemental absorbers as a function of photon energy. The mass attenuation
coefficient is p/p, where p is the density. The intensity I remaining after traversal of
thickness ¢ (in mass/unit area) is given by I = Iy exp(—t/)). The accuracy is a few
percent. For a chemical compound or mixture, 1/Aeff & Y joments W2z /A7, Where
wy is the proportion by weight of the element with atomic number Z. The processes
responsible for attenuation are given in not Fig. 27.9. Since coherent processes are
included, not all these processes result in energy deposition. The data for 30 eV
< E < 1 keV are obtained from http://www-cxro.lbl.gov/optical_constants
(courtesy of Eric M. Gullikson, LBNL). The data for 1 keV < E < 100 GeV are
from http://physics.nist.gov/PhysRefData, through the courtesy of John H.
Hubbell (NIST).

27.4.5. Bremsstrahlung and pair production at very high energies: At ultrahigh
energies, Eqns. 27.22-27.26 will fail because of quantum mechanical interference between
amplitudes from different scattering centers. Since the longitudinal momentum transfer
to a given center is small (o k/FE?, in the case of bremsstrahlung), the interaction is
spread over a comparatively long distance called the formation length (x E?/k) via
the uncertainty principle. In alternate language, the f